A test of the optimality approach to modelling canopy properties and CO2 uptake by natural vegetation

A test of the optimality approach to modelling canopy properties and CO2 uptake by natural vegetation

Title
Publication TypeJournal Article
Year of Publication2007
AuthorsSchymanski, SJ, Roderick, ML, Sivapalan, M, Assoc Prof Hutley, LB, Beringer, J
JournalPlant, Cell and Environment
Volume30
Issue12
Pagination1586 - 1598
Date Published01/01/07
ISSN0140-7791
Abstract

Photosynthesis provides plants with their main building material, carbohydrates, and with the energy necessary to thrive and prosper in their environment. We expect, therefore, that natural vegetation would evolve optimally to maximize its net carbon profit (Ncp), the difference between carbon acquired by photosynthesis and carbon spent on maintenance of the organs involved in its uptake. We modelled Ncp for an optimal vegetation for a site in the wet-dry tropics of north Australia based on this hypothesis and on an ecophysiological gas exchange and photosynthesis model, and compared the modelled CO2 fluxes and canopy properties with observations from the site. The comparison gives insights into theoretical and real controls on gas exchange and canopy structure, and supports the optimality approach for the modelling of gas exchange of natural vegetation. The main advantage of the optimality approach we adopt is that no assumptions about the particular vegetation of a site are required, making it a very powerful tool for predicting vegetation response to long-term climate or land use change.

URLhttp://espace.cdu.edu.au/view/cdu:2812

Publications

RIEL Headlines

Pages

Jump to NRBL themeJump to CMEM themeJump to FEM themeJump to SMWC themeJump to TRF themeJump to RIEL home

Innovative Research University

© 2011-2013 Charles Darwin University
Research Institute for the Environment and Livelihoods
Privacy Policy
CRICOS Provider No. 00300K | RTO Provider No. 0373

Phone (+61) 8 8946 6413
Email riel@cdu.edu.au